Pages

Tuesday, 27 September 2016

Polymers and Composites

Polymers & Composites

Polymers | Free Full-Text | Thermal Conductivity of Graphene ...
 

1. Polymers – Introduction
-a) Definition –monomer, polymer, degree of freedom, functionality, oligo polymer, High polymer, isotactic, atactic, syndiotactic, Homopolymers, Heteropolymers. 
b) Types of polymerization – Addition, condensation , co-polymerisation – comparison
c)Mechanism of Free radical polymerization – 3 step process
Step1-Initiation (Radical and Chain initiating species formation)
Step2 -Propagation (Living polymer formation)
Step3 -Termination (By coupling and disproportionation)

2. Plastics
a) Classification – i)based on thermal property – Thermo / Thermoset plastics            ii) Based on usage – Commodity and Engineering plastics
b) Prepration, properties and applications of  i) PVC      ii) Teflon   iii) Poly carbonate  iv) Poly Urethane    v)PET   vi) Nylon

3. Rubber
a) Raw rubber – Preparation - problems of raw rubber – Vulcanisation – Difference between raw and vulcanized rubber
b)Synthetic rubber – Preparation, properties, uses of i) SBR  ii) Butyl rubber

4. Composites
a) Definition – properties - Types  - Polymer matrix / Metal matrix / Ceramic matrix composties
b) Fibre Reinforced Plastics (FRP) – Types of FRP  - Applications of FRP



   TOPIC -1. POLYMERISATION:
1. Under the proper conditions of temperature, pressure and catalyst , the micro (Smaller) molecules are combining together to form a macro (big) molecule. This process is called Polymerisation.
E.g  n(CH2  = CH2à     --(CH2 - CH2 )—n

2. Micro molecules are called ‘Monomer’. Macro molecule is ‘Polymer’.
   Monomer is a micro molecule (small molecule) which combines with each other to form a polymer. Example: ethylene.
Condition for a monomer:

a.       Monomer should contain at least one double bond.
b.      It should contain minimum two same or different functional groups.

3. The number of monomers present in a polymer is ‘ Degree of polymerisation’ (n).
Degree of Polymerisation = Molecular Wt of polymer / Molecular Wt of monomer
                                  n= M/m
   If   n  = low , Mol.Wt  = 500 – 5000 Dalton units, it is Oligo polymer.
   If   n = High, Mol.Wt = 10,000 – 2,00,000 Dalton units , it is High polymer.

4. If the polymer chain contains same type of monomer, it is “Homo polymer”.
e.g PVC  structure  :  A – A – A- A- A-A -A
    If the polymer chain contains different type of monomer, it is “Hetero polymer” or
Copolymer.
e.g. Nylon  A-B- A-A-A-B-A

Types of Copolymers:
i)                     Alternating copolymer: M1-M2-M1-M2-M1-M2
ii)                  Random copolymer: M1-M2-M2-M1-M2-M1
iii)                 Block copolymer: M1-M1-M1-M2-M2-M2- M1-M1-M1-M2-M2-M2
iv)                Graft copolymer: M1-M1-M1-M1-M1-M1
   l
      M2
  l
      M2

5. Number of Reactive sites present in a monomer is called ‘Functionality’.
e.g  CH2  = CH2  , The double bond is acting as two reactive site, So, Ethylene functionality is 2.
CH2 – OH       In glycerol three –OH groups present. So, functionality = 3
CH – OH
CH2 – OH
Significances:
1.      If F = 2, they form linear chain structure.
2.      If F=3, they form branched structure.
3.      If F≥ 4, then they form complex 3D structure.

6. Orientation of monomers in a polymer chain is called “Tacticity”.  If the groups are in same orientation, it is isotactic.  If they are random it is “atactic”.  If they are arranged in alternative fashion, it is syndiotactic.




 A      A      A       A      A               A      B     B      A    B            A       B     A      B    A
│      │     │       │      │                │      │     │     │     │            │      │     │     │     │
 M  -M  -  M  -  M  -  M          -  M  - M -  M  -  M –M             M  -  M  - M – M - M        
 │    │      │      │      │                  │     │     │       │    │            │      │    │      │    │
   B     B      B      B       B                B      A     A      B    A             B      A     B     A     B

       (Iso tactic)                                    (Atactic)                                  (syndiotactic)

Cis polyisoprene                                  polypropylene                         Trans polyisoprene

TYPES OF POLYMERISATION
1. Addition  2. Condensation  3. Copolymerisation

No
Addition Polymerisation
Condensation Polymerisation
1
Eg. PVC
Eg. Nylon 6,6
2
Otherwise known as “Chain growth Polymerisation”.
Otherwise known as “Step wise Polymerisation”.
3
Monomers are adding together to form polymers.
Monomers are condensed to form polymer.
4
No elimination of other molecules occurs.
Elimination of smaller molecules occurs.
5
At least one multiple bond presence is essential condition.
Monomers must have two or more functional groups.
6
Homo polymers are formed.
Hetero polymers are formed.
7
Thermoplastics are formed.
Thermo set plastics are formed.
8
Molecular weight of the polymer is the integral multiple of monomers.
Need not be so.
9
Monomers disappear slow and steadily.
Monomers disappear at the initial stage of the reaction.
10
Longer processing time is needed.
Longer time is essential.
e.g
Addition Polymerisation:
n(CH2  = CH2à  -( CH2 - CH2  -)n
    Ethylene         à  Polyethylene

Condensation Polymerisation
n  H2N  - (CH2)6 – NH2   +  n HOOC – (CH2)4 – COOH  à
Hexa methylene diamine        Adipic acid
[ - HN  - (CH2)6 – NH - OC – (CH2)4 – CO - ]n
                                                                                        Nylon 6,6

Co-Polymerisation
1. It is a special kind of polymerisation, otherwise known as “Joint polymerisation”.
The product is known as ‘Co-polymers’.  It is used to alter the hardness, strength, rigidity of the monomers.

Hexagon: Oe.g SBR synthesis                                  CH2  = CH
                                                                                             
 n CH2  = CH -   CH  = CH2   +        n                             à
  (  75% butadiene)                                (25% Styrene)

 --[  CH2   - CH =   CH  - CH2  -  CH2  -  CH -]n         
Hexagon: O 


                                                                                                             

                                                (Styrene – Butadiene RubberSBR)   



MECHANISM OF FREE RADICAL ADDITION POLYMERISATION :

3 steps  in Free radical mechanism: 1. Initiation     2. Propagation   3. Termination

Step I - Initiation  : 1a)   Initiator  à  Radical
         1b)   Radical  +  Monomer  à  Chain Initiating Species  (CIS)

Step II  - Propagation:  CIS  +  n (monomer)  à  Living polymer

Step III  - Termination:

3a) By Coupling  :  Radical  + Radical   à  Macromolecule  ( Dead polymer)
3b)  By disproportionation (by Hydrogen transformation):
       Radical  +  Radical   à  Unsaturated polymer  + Saturated polymer

EXPLANATION:

1. Initiation

a)  Initiator  à  Radical
1.The substance which undergoes homolytic cleavage to form radical is called ‘Initiator’.  (e.g) acetyl peroxide initiator
2.The substance with single electron is called ‘ radical’. (e.g) acetyl peroxide radical
e.g  Acetyl peroxide  à  Radicals   ( at 800C)  CH3COO  - CH3COO  à  2 CH3COO.
(or)R.
 b)  Radical  +  Monomer  à  Chain Initiating Species  (CIS)
                          H                                  H
                          │                                  │                 
       R.  +  CH2=C       à    R – CH2  - C.                            
                          │                                  │
                         Cl                                   Cl

2. Propagation:
CIS  +  n (monomer)  à  Living polymer
                          H                                 H                                  H                 H
                          │                                 │                                 │                  │
        R – CH2  - C    +   n  (  CH2  =  C      )   à   R (-CH2 – C -)n-CH2  - C.
                          │                                 │                                 │                  │
                         Cl                                 Cl                                 Cl                Cl

3. Termination
a) Coupling
Radical  + Radical   à  Macromolecule  ( Dead polymer)
CIS + CISà Dead polymer

                          H                               H                                H    H
                          │                              │                                 │    │
        R – CH2  - C    +    R- CH2 – C.       à    R – CH2 – C – C – CH2 – R
                          │                              │                                 │    │             
                         Cl                              Cl                                Cl   Cl  
                                                                                 (Dead polymer)

b) Disproportionation (by Hydrogen transformation)
CIS + CIS à  Unsaturated polymer  + Saturated polymer
                          H                               H                                H                 H
                          │                              │                                  │                 │
        R – CH2  - C     +    R- CH2 – C.       à    R – CH  = C    +     H– C – CH2 – R
                          │                              │                                  │                 │             
                         Cl                              Cl                                 Cl                Cl  
The products are known as dead polymers.

TOPIC – 2 - PLASTICS
Definition:  Plastics are high polymers which can be moulded into any desired shape under proper conditions of temperature , pressure and catalyst.  (e.g) PVC , PET

Advantages of plastics:                                        Disadvantages of low quality plastics:
1. Insulator                                                      1.  very soft
2. Corrosion resistant                                      2.  Embrittlement
3. Easy mouldability                                       3. Agening ( Low durability)
4. Used as shock absorbers                             4. Cannot withstand high temperatures.
5. Has adhesive property                                5. Creep (shape Deformation  due to load)
6.  Less weight
7.  Chemical inertness
8.  Available in various colours


CLASSIFICATION OF PLASTICS:
a)Based on thermal properties  - i) Thermo plastics   ii)Thermo setting plastics
b)Based on utility  -  i) Commodity plastics  ii) Engineering plastics
                                      

Differences between Thermoplastics and thermosetting plastics
No
THERMOPLASTICS
THERMOSETTING PLASTIC
1
Eg. PVC , Polyethylene
Polyester, Bakelite
2
Plastics which are melted at high temperature, solidified at low temperature They can be remelted and remoulded into any desired shapes for any number of times.
They cannot be remoulded after their first usage.
3
Scarp can be used again.
Scarp can not be used again.
4
Formed by addition polymerisation
Formed by condensation polymerisation
5
They have linear structure
M – M – M – M – M – M
They have complex 3D structure.
         -  M  - M -  M  -  M –M            
│      │     │       │      │  
M  -M  -  M  -  M  -  M         
│      │     │     │     │       
M  -  M  - M – M – M
 │      │     │     │     │
6
The bond strength is low
The bond strength is high
7
Molecular weight is low
Molecular weight is high
8
Soluble in organic solvents.
Insoluble in organic solvents.
9
Prepared by Injection moulding
Prepared by compression moulding.








Differences between Commodity and Engineering plastics
No
COMMODITY PLASTICS
ENGINEERING PLASTIC
1
Eg. Low grade PVC ,polystyrene, Polyethylene
PVC, Teflon , Polycarbonate, poly urethane, Nylon, PET
2
Used for domestic and general purposes.
Used for special  and engineering purposes
3
Easily affected by chemicals
Not affected by  most of the chemicals.
4
Thermal property is very poor.
Thermal property is verygood.
5
They are not 100 % insulators.
They are  having high insulating properties.
6
They cannot withstand abrasion.
They can withstand abrasion.
7
Mechanical strength is low.
Mechanical strength is high.
8
Comparatively cheap.
Comparatively costly.

PROPERTIES AND USES OF ENGINEERING PLASTICS
No
Name
Properties
Uses
1
PVC
1.Colourless , odourless powder.
2. Affected by Organic chlorinated acids.
3. It is degraded by high temperature and radiations.
1.Pipes
2Electrical wire covering
3.Table cloth
4.Adhesives
2
TEFLON
1. Except Fluorine, it is chemically inert.
2.Withstands up to 3500C
3. Electrical insulators.
1. In chemical carrying pipes
2.Gaskets in cookers
3. Electrical switchboards.
3
POLY
CARBONATE
1. Withstand very high temperatures.
2. They are having high transparency.
1. In sterilizable bottles.
2. Film industry – Camera, Photography films
3. Transparent bottles
4
POLY URETHANE
Used at Subzero (-ve) temperatures.
1.Oceanography
2.In defense
3.High altitude mountains
5
PET
1.High stretch resistance
2. High wrinkle resistance
3. Unbreakable
4. Acid proof
1. PET jars, bottles
2.Helmets
3.Terylene fabrics
4.Textile , wool industry
6
POLY AMIDES
1.Flexibililty
2.Elasticity
3.Elongatable property
1. Tooth brush bristles
2.Automobile gears
3.Textile industry
4. Nylon ropes

PREPARATION OF SOME IMPORTANT ENGINEERING PLASTICS

1. PVC – POLY VINYL CHLORIDE

Step 1 – Acetylene is treated with Hydrochloric acid at 60-800C in presence of some metallic chloride catalyst. It forms Vinyl chloride.

CH≡CH    +    HCl    MCl /  60-800C       CH2 = CH                                                                                       
                                                                                │
                                                                                 Cl
(Acetylene)                                                     (Vinyl chloride)

Step 2 – Vinyl chloride, in presence of Hydrogen peroxide undergoes polymerisation to form Poly vinyl Chloride.
 


n CH2 = CH                     H2O2                               CH2          CH                                                                           
           │                                                                                  │
           Cl              Polymerisation                                          Cl      n

Vinyl Chloride                                                                                   PVC

2. TEFLON (Poly Tetra Flouro Ethylene –PTFE)

 Step – 1 When Chloro Diflouro methane is heated, it forms Tetra flouro ethylene is formed.
2CHClF2         heating               CF= CF2
(Chloro difluro methane)         (Tetra flouro ethylene)

Step 2 - Tetra flouro ethylene   , in presence of Benzoyl peroxide (Be2O2) , polymerized to form PTFE.
 


n (CF2 = CF2 )         Be2O2            CF- CF2   n
                           polymerisation
(Tetra flouro ethylene)                        (Teflon – PTFE)

3. POLY CARBONATE ( Lexan / Merlan)
Hexagon: O
 


                   _O                                                                              CH3
Hexagon: OHexagon: O                                                                             l
  n                              C = O   +  n OH -          __C __        --OH  à
Hexagon: O                  _ O                                                                                 l
                                                                            CH3

                                                      O               CH3
                                                     ║                  l
                                          -- (O—C—C6H4—C-- C6H4—O)n--    +2n   C6H5OH
                                                                          l
          CH3


4.POLY URETHANE  ( Perlon – u)

  O                                 O   
  ║                                 ║       
nC = N – (CH2)6 – N = C        +         n   HO – (CH2)4 – OH     à
(Hexa methylene di iso cyanate)        (Butane diol)

                                                              O                                       O
                                                              ║                                       ║
                                                            (-C – NH – (CH2)6 – NH – C – O – (CH2)4 – O- )n
                                                                                    (poly urethane)








5. POLY ETHYLENE TERYPTHALATE (PET)

Hexagon: O
 


 n HO – (CH2)2  - OH    + n HOOC -        - COOH   à

Ethylene glycol                    Terephthalic acid
Hexagon: O
 


                                (-O – (CH2)2 – O – C - - C - --C--)n     +  (2n-1) H2O
                                                                 ║              ║
                                                                 O             O   (PET)

6.  POLYAMIDES ( NYLON -6,6)                                                            
Condensation Polymerisation

n  H2N  - (CH2)6 – NH2   +  n HOOC – (CH2)4 – COOH  à

Hexa methylene diamine        Adipic acid

[ - HN  - (CH2)6 – NH - OC – (CH2)4 – CO - ]n  + (2n-1)H2O
                                                                         Nylon 6,6


TOPIC – 3 -    RUBBERS

Rubber is a high polymer with basic qualities of elasticity and non-crystallinity. They are known as elastic + polymer = elastomers.

Types – i) Raw (natural) rubber ii) Synthetic rubber

Natural rubber preparation:

1. When we cut the bark of rubber tree, latex milk is coming out.  It is collected in containers.
2. Latex contain major portion of water (70%) and 30% rubber as isoprene C5H8 units.
3. To get colloidal rubber, as coagulant, we are adding acetic acid.
4. The colloidal rubber is dried in air or passing smoke.  The previous one is called ‘dried rubber’ and another one is ‘smoked rubber’.
5. Then it is made as sheets using rollers.

Vulcanisation:
To remove the defects of rubber, we are adding sulphur to rubber and heating at 100 – 1400C under high pressure.  This process is called Vulcanisation.
     The defect of rubber is mainly due to the non-cross linked isoprene structure of rubber.  But, the added sulphur attacks the double bond of isoprene units and converts the  non-cross linked structure into a cross linked structure. So, the defects of natural rubber are removed.
     If 3 -5 % sulphur is added, it is soft rubber. They are used in tyres.
     If more than 30% Sulphur is added, it is called ‘hard’ or ‘ebonite rubber’. They are used in acid battery cases.

                         Isoprene C5H8   à   Poly isoprene





            CH3                                                               CH3                               CH3
            │                                              │                                    │
CH2 = C – CH = CH2     à   –CH2 – C= CH–CH –CH2 –  C = CH – CH2


                                                –CH2 – C= CH–CH –CH2 –  C = CH – CH2
                                                             │                                    │
                                                              CH3                                              CH3
                                                   ( Rubber defects due to non-cross linked structure)



Adding sulphur during vulcanization alters the structure as follows:
                  CH3                               CH3
                │                                    │
   –CH2 – C– CH–CH –CH2 –  C – CH – CH2
                │     │                             │   │
                 S     S                             S    S
                │     │                             │   │
   –CH2 – C– CH–CH –CH2 –  C –  CH – CH2
                │                                    │
                CH3                                              CH3


Differences between raw and vulcanized rubber

No
Raw  rubber
Vulcanised rubber
1
Soft and sticky during summer
Not Soft and sticky during summer
2
Hard and brittle during winter
Not Hard and brittle during winter
3
Swells in oil
Does not Swell in oil
4
Absorbs high amount of water
Does not Absorb high amount of water
5
Affected by organic and inorganic acids
 Not Affected by organic and inorganic acids
6
Easily undergoes oxidation
Does not easily undergo oxidation
7
Poor life time
High  life time
8
Tensile strength is low (200 kg/cm2)
Tensile strength is high (2000 kg/cm2)
9
Used between 10 – 60 0C
Used between  - 40  to 100 0C
10
E.g) Raw rubber
E.g) SBR , Butyl rubber


SOME IMPORTANT SYNTHETIC RUBBER

1.SBR – Styrene Butadiene Rubber – Buna -S
Hexagon: O                                                                CH2  = CH
                                                                                             
 n CH2  = CH -   CH  = CH2   +        n                             à
  (  75% butadiene)                                (25% Styrene)

                               [  CH2   - CH =   CH  - CH2  -  CH2  --  CH -]n         
Hexagon: O 




                                                                                    (Styrene – Butadiene RubberSBR)    


properties:
1. For vulcanization, it needs little amount of sulphur but more amount of accelerators.
2. High tensile strength.
3. Not Soft and sticky during summer
4. Not Hard and brittle during winter
5. Not affected by organic and inorganic acids.

Uses:
Tyres – Belts – Gaskets – Shoes – Tank linings

2. BUTYL RUBBER – (GR-I) rubber
                                                         CH3
                                                         │ 
n [ H2C = C (CH3)2 ]  +  n [CH2 = C – CH = CH2]   à
                                                                                                    CH3
                                                                                                    │ 
                                                      --[ H2C – C (CH3)2  -  CH2 –   C  = CH –CH2] --n

Properties:
1. Low permeability to air 2. High tensile strength. 3. Not Soft and sticky during summer 4. Not Hard and brittle during winter 5. Not affected by organic and inorganic acids.

Uses:
Inner tubes of automobile tyres - Belts – Gaskets – Shoes – Tank linings


TOPIC 4 – COMPOSITES AND FIBRE REINFORCED PLASTICS (FRP)
 COMPOSITES

# Composites are the special kind of material system consist of two distinct phases – matrix and dispersed phase.
# Matrix phase is the external continuous body constituent.
(e.g) Ceramics, Polymer, metals
# Dispersed Phase is the internal structural constituent.
(e.g) Fibre, Flakes, particulates

Need / Advantages / Properties of composites:
1. They are inert towards chemicals.
2. Corrosion resistance
3. Improved mechanical strength.
4. Improved creep resistance.
5. High insulation property.
6. Variable dielectric constant.
7. Withstand very high temperature.
8. High dimension stability.

Types of composites (Based on Matrix)
1. Polymer matrix composite(PMC)      
 2.Metal matrix composite (MMC)
 3. Ceramic matrix composite(CMC)








  POLYMER MATRIX COMPOSITE ( FIBRE REINFORCED PLASTICS –FRP)
Synthesis:
Step 1.
Polymer plastic resin is taken as matrix phase.
Example:

S.No
Resin
 To provide
1
Polyester
Good strength and mechanical property
2
Epoxy resin
Tensile and mechanical strength
3
Silicone resin
Excellent thermal and electrical property
4
Phenolic resin
High temperature resistance
5
Aromatic amide ( Aramid) resin
Reusable nature

Step 2.
Fibre is taken as Dispersed Phase.
Example:

S.No
Fibre
 To provide
1
Alumina
Dimension stability
2
Boron  
Stiffness
3
Glass
Corrosion resistance
4
Carbon
Bio compatibility
5
Graphite
Lubrication


Step 3.
 Matrix Phase + Dispersed Phase are suitably mixed, and cured under proper heat and pressure.  This results in FRP.

COMMON APPLICATIONS  OF  FRP:
1. Medical field    
2. Aero planes   
3. Air crafts     
4. Automobiles
5. Sports                 
6. Industries     
7. Submarines    
8. Pollution control

1. Medical field: -       For hip joints and fracture curing plate treatment, steel may have some side effects due to non-bio compatibility.  But Carbon FRP plates are highly bio compatible and they are used as plates.

2. Aeroplane: - In Aero planes vertical and horizontal wings, Boron FRP are used due to their very low mass / volume ratio.  It is 30% lighter than steel.

3. Air crafts: -  In aircraft wings, high resistant blocks, nose cones of missiles, Carbon or graphite FRP are used.

4. Automobiles -Due to high mechanical strength, they are used in automobile parts.

5. Sports -        Due to high water resistivity, graphite, silicone FRPs are used in sports mats and artificial sports lawns.

6. Industries -   As they are not affected by chemicals, they are used in chemical industries as reservoirs.

7. Submarines -           Due to high water resistivity and strength, Glass FRP and silicone FRP are used in submarines.

8. Pollution control -   As they are easily bio degradable, their pollution problem is minimum.

SPECIFIC EXAMPLE:
CARBON FRP:

No
TYPE
PROPERTY
USES
1
Carbon- Polyester FRP
1.Bio compatability
2.Improved mechanical property
1. Medicine
2. High load automobiles
2
Carbon – Epoxy resin FRP
 1.Good tensile and mechanical strength
Chemical industries
3
Carbon – Phenolic FRP
1.High temperature resistance
2.Friction resistance
1.Aircraft,
2. Aeroplanes
4
Carbon – Silicone FRP
1. Bio compatability
2. Excellent thermal and electrical nature
1. Sports lawns
2. Submarines
3. Medicine
5
Carbon – Aramid FRP
1. Bio compatability
2. Reusability
1. Pollution free plastics

In Similar way , we can have glass FRP, Alumina FRP, Boron FRP etc.,.

No comments:

Post a Comment